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Théo Michelot∗

December 21, 2016

We provide some advice and chunks of R code, to get started with the implementation of
hidden Markov models. In particular, we present two examples: a very basic 2-state Poisson
HMM (Section 2), and a slightly more complex 3-state HMM inspired by movement models
(Section 3). We hope that we did not leave any inaccuracies in the text or pieces of code, but
please let us know if you find a mistake in this document.
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1 Theoretical ideas

1.1 Definition of HMMs

A hidden Markov model (HMM) is a time series model, comprising two processes: a series
of (possibly multivariate) observations (Zt)

T
t=1, and a sequence of unobserved states (St)

T
t=1.

The process St is taken to satisfy the Markov property, and can take a finite number N
of values – which we label, for convenience, {1, . . . , N}. At each instant t, the observation
Zt is drawn from one of N different distributions, according to the value St of the state
process. We call “N -state HMM” a HMM whose state process can take N different values.
The dependence structure of a HMM is illustrated in Figure 1.

state process
(hidden)

St−1 St St+1

observations Zt−1 Zt Zt+1

Figure 1: Dependence structure of a HMM.

We introduce some notation for the subsequent sections. We denote δ the initial distri-
bution of the process St, i.e.

δ = (Pr(S1 = 1),Pr(S1 = 2), . . . ,Pr(S1 = N))

We denote γij the probability of a transition from state i to state j, and Γ the transition
probability matrix, i.e.

Γ =

γ11 · · · γ1N
...

. . .
...

γN1 · · · γNN

 =

 Pr(St = 1|St−1 = 1) · · · Pr(St = N |St−1 = 1)
...

. . .
...

Pr(St = 1|St−1 = N) · · · Pr(St = N |St−1 = N)


Finally, we denote P (Zt) the matrix of state-dependent distributions, defined as

P (Zt) =

p(Zt|St = 1) · · · 0
...

. . .
...

0 · · · p(Zt|St = N)


1.2 Likelihood computation

In this document, we focus on drawing inference from HMMs using maximum likelihood
estimation. We consider a series of T observations z(T ) = {z1, ...,zT }, and we denote S(T ) =
{S1, ..., ST }. Then, in the case of a N -state HMM, the likelihood LT can be written

LT = p(Z(T ) = z(T )) =
N∑

S1=1

N∑
S2=1

· · ·
N∑

ST=1

p(Z(T ) = z(T ), S(T ))

where each term is,

p(Z(T ) = z(T ), S(T )) = p(S1)
T∏
t=2

p(St|St−1)
T∏
t=1

p(Zt = zt|St)
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This expression of the likelihood is a sum of NT terms, each of which is made of 2T factors.
The complexity of this computation is O(TNT ), which makes it numerically intractable for
large numbers of observations.

It is possible to reduce the number of operations using the forward algorithm (see Section
2.3.2 of Zucchini et al., 2016). Using the notations introduced in Section 1.1, the likelihood
is then calculated as

LT = δP (z1)ΓP (z2) · · ·ΓP (zT )1′, (1)

where 1′ is a column vector of ones.
This expression of the likelihood is very easy to implement, and can be recursively com-

puted with complexity O(TN2), i.e. the computational effort grows linearly with the size of
the data. This expression thus allows numerical tractability of the likelihood even for large
numbers of observations.

In practice, the expression of the likelihood given in Equation 1 is evaluated using the
following scheme, which we implement in the subsequent sections:

LT = αT1′,

where αT is computed recursively by

α1 = δP (z1), αt = αt−1ΓP (zt) (2)

2 Example 1: Poisson HMM

We start with the simple example of a 2-state Poisson HMM, i.e. the observations are drawn
from a Poisson distribution, whose rate parameter depends on the underlying state.

2.1 Simulate data

We will start with the simulation of observations from a HMM. The idea is to implement the
model described in Section 1.1.

We first define all the parameters of the model, i.e. the initial distribution and transition
probability matrix of the state process, and the state-dependent Poisson rate parameters.

# transition probability matrix

Gamma <- matrix(c(0.8,0.2,

0.1,0.9),

ncol=2,byrow=TRUE)

# initial distribution

delta <- c(0.5,0.5)

# state-dependent parameters

rate <- c(5,15)

The state process is initialized by sampling S1 to be 1 or 2 (as this is a 2-state HMM), with
probabilities determined by the initial distribution. Then, the first observation is generated
from a Poisson distribution with rate determined by the value of S1. In R:
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nbObs <- 1000 # number of observations

S1 <- rep(NA,nbObs) # sequence of states

Z <- rep(NA,nbObs) # sequence of observations

# initialize state and observation

S1[1] <- sample(1:2,size=1,prob=delta)

Z[1] <- rpois(1,rate[S1[1]])

For t = 2, . . . , T , St is chosen with the probabilities specified by the transition probability
matrix, i.e. Pr(St = j|St−1 = i) = γij , and Zt is drawn from a Poisson distribution with rate
determined by the value of St.

# loop over all observations

for(t in 2:nbObs) {
S1[t] <- sample(1:2,size=1,prob=Gamma[S1[t-1],])

Z[t] <- rpois(1,rate[S1[t]])

}

To visualise the simulated observations, we can plot a histogram of the data, superimposed
with the mass distribution functions of the Poisson distributions used to simulate the data.

# histogram of observations

hist(Z,probability=TRUE,ylim=c(0,0.08))

# lines of state-dependent distributions

# (weighted by stationary distribution)

grid <- seq(min(Z),max(Z))

station <- solve(t(diag(2)-Gamma+1),rep(1,2))

points(grid,dpois(grid,rate[1])*station[1],type="o",col="firebrick3")

points(grid,dpois(grid,rate[2])*station[2],type="o",col="dodgerblue3")

legend("topleft",col=c("firebrick3","dodgerblue3"),

legend=c("State 1","State 2"),lwd=2)
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2.2 Implement the likelihood function

The first step towards drawing inference from HMMs is to implement the likelihood function
of the model. We take advantage of the very efficient forward algorithm described in Section
1.2, to reduce the computational cost of the maximum likelihood estimation.

We implement the likelihood as a function of the following arguments:

• the observations (zt)
T
t=1;

• the parameters of the model, i.e. the initial distribution and transition probability matrix
of the state process, and the state-dependent rates of the Poisson distribution.

The implementation of the forward algorithm is straightforward, starting with δP (z1)
and iteratively multiplying by ΓP (zt) for each time t ∈ {2, . . . , T}. For computational
convenience, we store the P (zt) in a more compact way: we define allProbs, a matrix of
dimensions T ×N , in which each row t contains the diagonal entries of P (zt).

likPois <- function(Z,rate,Gamma,delta)

{
# number of observations

nbObs <- length(Z)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)
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for(obs in 1:nbObs) {
allProbs[obs,1] <- dpois(Z[obs],rate[1]) # prob conditional on (state = 1)

allProbs[obs,2] <- dpois(Z[obs],rate[2]) # prob conditional on (state = 2)

}

# forward algorithm

v <- delta*allProbs[1,]

for (t in 2:nbObs)

v <- v%*%Gamma*allProbs[t,]

return(sum(v))

}

We can now use that function on the data simulated in Section 2.1:

likPois(Z,rate,Gamma,delta)

## [1] 0

The likelihood function returns zero, and will return zero for any values of the parameters.
This is due to numerical underflow: the likelihood is computed as the product of many small
numbers, and so it is a very small number. It is so small that R rounds it to zero. Here is a
trivial illustration of numerical underflow:

0.1^10

## [1] 1e-10

0.1^100

## [1] 1e-100

0.1^1000

## [1] 0

The solution to this problem is to calculate the log-likelihood function instead of the like-
lihood. Because the logarithm function is strictly monotonic, the maximum of the likelihood
and that of the log-likelihood are reached for the same values of the parameters.

The likelihood is computed as a matrix product, and it is not possible to obtain the log-
likelihood by simply taking the sum of the logarithm of its factors. Thus, we use the trick
suggested by Zucchini et al. (2016) (see Chapter 3.2), that they call “scaling”, and write the
log-likelihood function as

logLikPois <- function(Z,rate,Gamma,delta)

{
nbObs <- length(Z)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)
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for(obs in 1:nbObs) {
allProbs[obs,1] <- dpois(Z[obs],rate[1]) # prob conditional on (state = 1)

allProbs[obs,2] <- dpois(Z[obs],rate[2]) # prob conditional on (state = 2)

}

# forward algorithm (with scaling)

v <- delta*allProbs[1,]

llk <- 0

for (t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

# scaling

llk <- llk+log(sum(v))

v <- v/sum(v)

}

return(llk)

}

Note that only a couple of lines of code have been added, and that these lines remain
exactly the same for any HMM formulation. Now, if we compute the log-likelihood of the
simulated data, we can verify that it returns a finite number (i.e. the likelihood is not zero).

logLikPois(Z,rate,Gamma,delta)

## [1] -2905.149

2.3 Numerical optimization of the likelihood

Now that we have implemented the log-likelihood function, we want to estimate the parame-
ters of the model by maximum likelihood estimation. To do so, we use the optimizer nlminb in
R, which roams the parameter space until finding the maximum of the function, and returns
the value of the parameters which maximizes the function.

We need to make a few changes in the implementation of the likelihood function, to be
able to apply numerical optimization with nlminb.

• nlminb is a minimizer, and not a maximizer. Thus, we need to find the parameters which
minimize the negative log-likelihood, which is equivalent to identifying the parameters
which maximize the (positive) log-likelihood.

• nlminb optimizes a function over a vector of parameters, so we need to store all the
parameters of the model in one vector.

The negative log-likelihood of the Poisson HMM can be implemented as follows.

nLogLikPois <- function(Z,par)

{
nbObs <- length(Z)

# unpack vector of parameters
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rate <- par[1:2]

Gamma <- matrix(NA,nrow=2,ncol=2)

Gamma[,1] <- par[3:4]

Gamma[,2] <- 1-Gamma[,1] # use row constraints

delta <- c(par[5],1-par[5])

# probabilities of observations conditional on state

# (vectorized instead of iterative, for speed)

allProbs <- matrix(1,nrow=nbObs,ncol=2)

allProbs[,1] <- dpois(Z,rate[1])

allProbs[,2] <- dpois(Z,rate[2])

v <- delta*allProbs[1,]

llk <- 0

for (t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

llk <- llk+log(sum(v))

v <- v/sum(v)

}

return(-llk)

}

We do not need to store all transition probabilities in the vector of parameters, because of
the row constraints, so we choose to only store the first column. Similarly, we only store the
first element of the initial distribution. We can check that the function returns the negative
log-likelihood:

par <- c(rate,Gamma[,1],delta[1])

nLogLikPois(Z,par)

## [1] 2905.149

We can now minimize the negative log-likelihood function, using nlminb. To do so, we
need to choose initial values for the parameters of the model (the point from which the
optimization routine will start its search). The choice of the initial parameter values is
crucial, and the optimizer might not be able to reach the global maximum of the function if
the starting point is poorly chosen.

In addition, nlminb is a constrained optimizer, so we must specify the bounds of the
parameter space, with its arguments lower and upper. The Poisson rates are in [0,∞), while
the transition probabilities and the initial probabilities are in [0, 1].

# initial parameters

rate0 <- c(3,10)

Gamma0 <- matrix(c(0.9,0.1,0.1,0.9),ncol=2)

delta0 <- c(0.5,0.5)

par0 <- c(rate0,Gamma0[,1],delta0[1])

# fit model

model <- nlminb(start=par0,objective=nLogLikPois,Z=Z,
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lower=c(0,0,0,0,0),upper=c(Inf,Inf,1,1,1))

# estimated minimum negative log-likelihood

model$objective

## [1] 2903.241

# parameter estimates

model$par

## [1] 4.9318071 14.7702122 0.7839544 0.1012449 0.0000000

And, if we reformat the parameter estimates, we can compare them to the simulation param-
eters:

rateMLE <- model$par[1:2]

GammaMLE <- matrix(c(model$par[3:4],1-model$par[3:4]),ncol=2)

deltaMLE <- c(model$par[5],1-model$par[5])

rateMLE

## [1] 4.931807 14.770212

GammaMLE

## [,1] [,2]

## [1,] 0.7839544 0.2160456

## [2,] 0.1012449 0.8987551

deltaMLE

## [1] 0 1

The estimates for the rates and the transition probabilities are consistent with the pa-
rameters used in the simulation. Moreover, as explained in Section 4.2.4 of Zucchini et al.
(2016), the maximum likelihood estimate of δ is expected to be a unit vector – i.e., in a
2-state model, either (0, 1) or (1, 0) – as we see here.

3 Example 2: movement HMM

In this second example, we implement a 3-state HMM, inspired by the models used to analyse
animal movement data, as described by Langrock et al. (2012). Movement data usually
consists in the animal’s locations, collected at regular time intervals. Because the movement is
observed in two dimensions (longitude and latitude values), we consider bivariate observations
for this model. We use the animal’s step lengths (distance between successive locations) and
turning angles (angle between successive segments) as metrics of interest. The dependence
structure of the model is shown in Figure 2.

We choose the gamma and von Mises distributions to model the step lengths and turning
angles, respectively. That is, at time t, the step length is modelled by a gamma distribution
and the turning angle by a von Mises distribution, whose parameters depend on the state
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state process
(hidden)

St−1 St St+1

observations (Lt−1, ϕt−1) (Lt, ϕt) (Lt+1, ϕt+1)

Figure 2: Dependence structure of the movement HMM, with Lt the step length and ϕt the turning
angle at time t.

St. The gamma distribution depends on two parameters, which can either be the mean and
standard deviation, or the shape and rate. The former are easier to think about, but R
expects the latter, so we use the following formulas,

shape =
mean2

SD2 , rate =
mean

SD2 .

The von Mises distribution takes two parameters: the mean angle – in (−π, π] – and the
concentration – strictly positive – which is analogous to the inverse of the variance.

3.1 Simulate data

We choose the values of the simulation parameters, i.e. the parameters of the state-dependent
distributions, the transition probabilities, and the initial distribution. We choose the parame-
ters to mimic a realistic pattern of animal movement: longer step lengths are associated with
more directed movement (angles centred on 0, state 3), and shorter steps with more turnings
(angles centred on π, state 1).

# transition probability matrix

Gamma <- matrix(c(0.9,0.05,0.05,

0.08,0.84,0.08,

0.05,0.15,0.8),

ncol=3,byrow=TRUE)

# initial distribution

delta <- c(1,1,1)/3

# state-dependent parameters

stepMean <- c(0.5,5,30) # mean of gamma dis

stepSD <- c(0.5,4,15)

angleMean <- c(pi,0,0)

angleCon <- c(1,1,10)

# the gamma distribution in R uses shape/rate instead of mean/SD

stepShape <- stepMean^2/stepSD^2

stepRate <- stepMean/stepSD^2

We initialise the processes, as before. The state at time 1 is drawn from {1, 2, 3}, with
probabilities determined by the initial distribution. Then, the first step and first angle are
drawn from a gamma and von Mises distributions, respectively, with parameters determined
by the state S1.
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library(CircStats) # for von Mises distribution

nbObs <- 1000 # number of observations

S2 <- rep(NA,nbObs) # sequence of states

step <- rep(NA,nbObs) # sequence of steps

angle <- rep(NA,nbObs) # sequence of angles

# initialize state and observations

S2[1] <- sample(1:3,size=1,prob=delta)

step[1] <- rgamma(1,stepShape[S2[1]],stepRate[S2[1]])

angle[1] <- rvm(1,angleMean[S2[1]],angleCon[S2[1]])

We loop over observations 2, . . . , T :

for(t in 2:nbObs) {
S2[t] <- sample(1:3,size=1,prob=Gamma[S2[t-1],])

step[t] <- rgamma(1,stepShape[S2[t]],stepRate[S2[t]])

angle[t] <- rvm(1,angleMean[S2[t]],angleCon[S2[t]])

}

The function rvm generates values of angles between 0 and 2π, but we find it easier to
work with angles in (−π, π], so we move the values in (π, 2π] to (−π, 0]:

angle[which(angle>pi)] <- angle[which(angle>pi)]-2*pi

We can plot histograms of the observations, as well as the gamma and von Mises density
functions used to simulate values.

# histogram of steps

hist(step,probability=TRUE)

# lines of state-dependent distributions

# (weighted by stationary distribution)

grid <- seq(min(step),max(step),length=500)

station <- solve(t(diag(3)-Gamma+1),rep(1,3))

points(grid,dgamma(grid,stepShape[1],stepRate[1])*station[1],

type="l",col="firebrick3")

points(grid,dgamma(grid,stepShape[2],stepRate[2])*station[2],

type="l",col="dodgerblue3")

points(grid,dgamma(grid,stepShape[3],stepRate[3])*station[3],

type="l",col="seagreen3")

legend("topright",col=c("firebrick3","dodgerblue3","seagreen3"),

legend=c("State 1","State 2","State 3"),lwd=2)
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Histogram of step
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# histogram of angles

hist(angle,probability=TRUE,breaks=seq(-pi,pi,length=20))

# lines of state-dependent distributions

# (weighted by stationary distribution)

grid <- seq(-pi,pi,length=500)

points(grid,dvm(grid,angleMean[1],angleCon[1])*station[1],

type="l",col="firebrick3")

points(grid,dvm(grid,angleMean[2],angleCon[2])*station[2],

type="l",col="dodgerblue3")

points(grid,dvm(grid,angleMean[3],angleCon[3])*station[3],

type="l",col="seagreen3")

legend("topright",col=c("firebrick3","dodgerblue3","seagreen3"),

legend=c("State 1","State 2","State 3"),lwd=2)
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Histogram of angle
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It is possible to transform the series of steps and angles to the simulated locations of the
animal, given the initial location – which we choose arbitrarily as (0, 0) – e.g. to plot the
simulated track.

# matrix of locations (one row = one x/y location)

X <- matrix(NA,nrow=nbObs,ncol=2)

X[1,] <- c(0,0) # arbitrary value for initial location

phi <- 0 # compass direction

for(t in 2:nbObs) {
# 2-dimensional step taken at time 't'

m <- step[t-1]*c(Re(exp(1i*phi)),Im(exp(1i*phi)))

X[t,] <- X[t-1,] + m # update location

phi <- phi + angle[t-1] # update compass direction

}

# plot track, colored by states

plot(X[,1],X[,2],xlab="x",ylab="y",pch=19,cex=0.7,asp=1,

col=c("firebrick3","dodgerblue3","seagreen3")[S2])

segments(X[-nrow(X),1],X[-nrow(X),2],X[-1,1],X[-1,2],

col=c("firebrick3","dodgerblue3","seagreen3")[S2[-nrow(X)]])
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3.2 Implement the likelihood function

Using the same ideas as before, we implement the log-likelihood function of the 3-state move-
ment HMM. Note that we compute the joint probability of the step and angle as the product
of the marginal probabilities, because the step and angle are assumed to be independent,
conditional on the state.

logLikMove <- function(step,angle,delta,Gamma,stepShape,stepRate,

angleMean,angleCon)

{
nbObs <- length(step)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=3)

for(obs in 1:nbObs) {
for(state in 1:3) {
stepProb <- dgamma(step[obs],stepShape[state],stepRate[state])

angleProb <- dvm(angle[obs],angleMean[state],angleCon[state])

# joint probability = step probability * angle probability

allProbs[obs,state] <- stepProb*angleProb

}
}
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# forward algorithm

v <- delta*allProbs[1,]

llk <- 0

for(t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

llk <- llk+log(sum(v))

v <- v/sum(v)

}

return(llk)

}

The code for the forward algorithm is exactly identical to what we used for the 2-state
Poisson HMM: only the computation of the matrix allProbs changes here. We can evaluate
the log-likelihood on the simulated movement data:

logLikMove(step,angle,delta,Gamma,stepShape,stepRate,angleMean,angleCon)

## [1] -3878.016

3.3 Numerical optimization of the likelihood

We want to find the maximum of the (log-)likelihood function, and the values of the param-
eters of the model for which it is reached. In a model with three states (and more), it is a
bit trickier to parametrise the transition probability matrix. It is necessary to ensure that
all transition probabilities are in [0, 1], and that each row of the transition probability matrix
sums to 1. In a 2-state HMM, we estimate one probability per row, and it is sufficient to
specify that it should be constrained to [0, 1] (because p ∈ [0, 1] ⇒ 1 − p ∈ [0, 1]). However,
with three states, we estimate two probabilities per row, and constraining them to [0, 1] is not
sufficient. In the following, we first estimate unconstrained parameters on [0,∞), and then
satisfy the constraints by dividing each row of the transition probability matrix by the sum
of its elements. We apply the same idea to estimate the initial distribution of the model.

First, we write the negative log-likelihood function, as a function of the observations step
and angle, and the vector par of all the parameters.

nLogLikMove <- function(step,angle,par)

{
nbObs <- length(step)

# unpack parameters

stepShape <- par[1:3]

stepRate <- par[4:6]

angleMean <- par[7:9]

angleCon <- par[10:12]

Gamma <- diag(3) # diagonal of ones

Gamma[!Gamma] <- par[13:18] # fill non-diagonal entries

Gamma <- Gamma/rowSums(Gamma) # divide by row sums

16



delta <- c(par[19],par[20],1)

delta <- delta/sum(delta)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=3)

# vectorized instead of iterating over observations, for speed

for(state in 1:3) {
stepProb <- dgamma(step,stepShape[state],stepRate[state])

angleProb <- dvm(angle,angleMean[state],angleCon[state])

# joint probability = step probability * angle probability

allProbs[,state] <- stepProb*angleProb

}

# forward algorithm

v <- delta*allProbs[1,]

llk <- 0

for(t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

llk <- llk+log(sum(v))

v <- v/sum(v)

}

return(-llk)

}

We check that the function returns the negative log-likelihood, with the simulated data.
We need to transform the transition probabilities and initial probabilities, to be positive
valued, before passing them to the function (because of the constraints mentioned above).

wGamma <- Gamma/diag(Gamma)

wDelta <- delta/delta[3]

par <- c(stepShape,stepRate,angleMean,angleCon,wGamma[!diag(3)],wDelta[1:2])

nLogLikMove(step,angle,par)

## [1] 3878.016

We select initial parameters, and fit the model. Note that we transform the transition
probabilities and initial distribution to be positive valued.

# initial parameters

stepMean0 <- c(1,10,25)

stepSD0 <- c(1,5,15)

stepShape0 <- stepMean0^2/stepSD0^2

stepRate0 <- stepMean0/stepSD0^2

angleMean0 <- c(3,0,0)

angleCon0 <- c(0.5,1.5,5)

Gamma0 <- matrix(c(0.8,0.1,0.1,

0.1,0.8,0.1,
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0.1,0.1,0.8),ncol=3)

# transform Gamma0 and delta0 to working scale

wGamma0 <- Gamma0/diag(Gamma)

wGamma0 <- Gamma0[!diag(3)]

delta0 <- c(1,1,1)/3

wDelta0 <- delta0[-3]/delta0[3]

par0 <- c(stepShape0,stepRate0,angleMean0,angleCon0,wGamma0,wDelta0)

model <- nlminb(start=par0,objective=nLogLikMove,step=step,angle=angle,

lower=c(rep(0,6),rep(-pi,3),rep(0,11)),

upper=c(rep(Inf,6),rep(pi,3),rep(Inf,11)))

Finally, we can unpack the parameter estimates, to compare them with the parameters
used in the simulation.

stepShapeMLE <- model$par[1:3]

stepRateMLE <- model$par[4:6]

stepMeanMLE <- stepShapeMLE/stepRateMLE

stepSDMLE <- sqrt(stepShapeMLE)/stepRateMLE

angleMeanMLE <- model$par[7:9]

angleConMLE <- model$par[10:12]

GammaMLE2 <- diag(3)

GammaMLE2[!GammaMLE2] <- model$par[13:18]

GammaMLE2 <- GammaMLE2/apply(GammaMLE2,1,sum)

deltaMLE2 <- c(model$par[19],model$par[20],1)

deltaMLE2 <- deltaMLE2/sum(deltaMLE2)

stepMeanMLE

## [1] 0.5527997 4.8875161 30.3121434

stepSDMLE

## [1] 0.553539 3.729172 16.843165

angleMeanMLE

## [1] 3.10009174 -0.11538832 -0.01762986

angleConMLE

## [1] 1.0591711 0.9790836 8.5825098

GammaMLE2

## [,1] [,2] [,3]

## [1,] 0.89371636 0.04041003 0.06587361

## [2,] 0.07065495 0.85895291 0.07039214

## [3,] 0.05761083 0.12409390 0.81829527

deltaMLE2

## [1] 0.000000e+00 9.999983e-01 1.653669e-06
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4 Extensions

4.1 Covariates

4.1.1 Method

In Equation 1, the transition probability matrix was taken to be constant in time. However,
it is often of interest to model the state transition probabilities as functions of time-varying
covariates. For example, in movement ecology, this can be used to answer questions such as:
“what influence does this environmental covariate have on the animal’s activity?”. This can
be done by assuming the Markov chain to be time-varying, with transition probability matrix

Γ(t) =

γ
(t)
11 · · · γ

(t)
1N

...
. . .

...

γ
(t)
N1 · · · γ

(t)
NN


The likelihood of the model then becomes

LT = δP (z1)Γ
(2)P (z2) · · ·Γ(T )P (zT )1′

The transition probabilities can be linked to the covariate(s) via the multinomial logit
link. In the general case of N states,

γ
(t)
ij = Pr

(
St = j|St−1 = i

)
=

exp(ηij)∑N
k=1 exp(ηik)

, (3)

where i, j = 1, . . . , N , and

ηij =

{
β
(ij)
0 +

∑p
l=1 β

(ij)
l wlt if i 6= j,

0 otherwise,

Here, wlt is the l-th covariate at time t, and p is the number of covariates considered.
Note that in the case of a 2-state HMM, the expression of the transition probability matrix
can be rewritten

Γ(t) =

(
1− logit−1(η12) logit−1(η12)

logit−1(η21) 1− logit−1(η21)

)
Here we describe the inclusion of covariates to the general case of a N -state HMM, but

the implementation can be simplified for a 2-state HMM, using the expression above.

4.1.2 Implementation

If covariates are included in the model, the parameters to estimate are the regression coeffi-

cients β
(ij)
l , rather than the transition probabilities directly. Then, the transition probability

matrix needs to be computed at each time step t of the forward algorithm.
We store the coefficients β for the off-diagonal transition probabilities in a (p+ 1)× (N ·

(N − 1)) matrix. For example, for a 3-state HMM with two covariates,

β =

β
(12)
0 β

(13)
0 β

(21)
0 β

(23)
0 β

(31)
0 β

(32)
0

β
(12)
1 β

(13)
1 β

(21)
1 β

(23)
1 β

(31)
1 β

(32)
1

β
(12)
2 β

(13)
2 β

(21)
2 β

(23)
2 β

(31)
2 β

(32)
2
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Here the first row corresponds to the intercept terms and the other two rows to the slope
coefficients associated with the two covariates. There are as many columns as there are off-
diagonal entries in the 3× 3 transition probability matrix, and that matrix is filled row-wise

(i.e. column 1 in β is linked to γ
(t)
12 , column 2 is linked to γ

(t)
13 , column 3 is linked to γ

(t)
21 , etc.).

We store the covariate values in a design matrix with p+1 columns: one for the intercept,
and one for each covariate.

W =


1 w11 w21 · · · wp1

1 w12 w22 · · · wp2
...

...
...

...
1 w1T w2T · · · wpT


Each row of the design matrix W corresponds to one time index . At each instant, the

N · (N − 1) predictors ηij are obtained by multiplying one row of W by β:(
1 w1t w2t · · · wpt

)
· β =

(
η12 η13 · · · ηN,N−1

)
Then, we can compute the transition probabilities as in Equation 3. Thus, in each iteration

t of the forward algorithm, within the likelihood function, a few lines of code should be added
to compute Γ(t). In the code below, we call covs the design matrix W , and beta the matrix
β of coefficients.

v <- delta*allProbs[1,]

llk <- 0

for(t in 2:nbObs) {
# matrix with ones on diagonal

Gamma <- diag(nbStates)

# fill non-diagonal elements with exp of linear predictors ("eta"s)

Gamma[!Gamma] <- exp(covs[t,]%*%beta)

# transpose, because R fills matrices column-wise

Gamma <- t(Gamma)

# normalize rows to sum to one

Gamma <- Gamma/rowSums(Gamma)

v <- v%*%Gamma*allProbs[t,]

llk <- llk+log(sum(v))

v <- v/sum(v)

}

4.2 More to come...

HMMs have many more conceptual extensions, as described by Zucchini et al. (2016), so we
might add to this section later. If you would be interested in a particular extension, let us
now!
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5 Inference and model assessment

5.1 State decoding with the Viterbi algorithm

The Viterbi algorithm (Zucchini et al., 2016, Chapter 5) is used to compute the sequence of
states most likely to have given rise to the observations. It is referred to as global decoding,
and consists in a recursive scheme to maximize over all possible state sequences.

5.1.1 Poisson HMM

The following function implements the Viterbi algorithm for the 2-state Poisson HMM. It
takes the data and values of the model parameters as inputs.

viterbiPois <- function(Z,rate,Gamma,delta)

{
nbObs <- length(Z)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)

allProbs[,1] <- dpois(Z,rate[1])

allProbs[,2] <- dpois(Z,rate[2])

xi <- matrix(0,nrow=nbObs,ncol=2)

v <- delta*allProbs[1,]

xi[1,] <- v/sum(v)

for (t in 2:nbObs) {
v <- apply(xi[t-1,]*Gamma,2,max)*allProbs[t,]

xi[t,] <- v/sum(v)

}

# most probable state sequence

stSeq <- rep(NA,nbObs)

stSeq[nbObs] <- which.max(xi[nbObs,])

for (t in (nbObs-1):1)

stSeq[t] <- which.max(Gamma[,stSeq[t+1]]*xi[t,])

return(stSeq)

}

We can now decode the most probable state sequence, for the model fitted to the simulated
data, and compare with the true (simulated) state sequence.

# Z are the simulated observations, and the other arguments are the maximum

# likelihood estimates of the parameters of the model

states <- viterbiPois(Z,rateMLE,GammaMLE,deltaMLE)

# Proportion of decoded states identical to true (simulated) states

length(which(states==S1))/length(states)

## [1] 0.977
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The states were correctly decoded for 97.7% of the observations.

5.1.2 Movement HMM

Only the computation of P (zt) needs to be changed, to adapt the function to the 3-state
movement HMM.

viterbiMove <- function(step,angle,stepShape,stepRate,angleMean,angleCon,

Gamma,delta)

{
nbObs <- length(step)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=3)

for(state in 1:3) {
stepProb <- dgamma(step,stepShape[state],stepRate[state])

angleProb <- dvm(angle,angleMean[state],angleCon[state])

# joint probability = step probability * angle probability

allProbs[,state] <- stepProb*angleProb

}

xi <- matrix(0,nrow=nbObs,ncol=3)

v <- delta*allProbs[1,]

xi[1,] <- v/sum(v)

for (t in 2:nbObs) {
v <- apply(xi[t-1,]*Gamma,2,max)*allProbs[t,]

xi[t,] <- v/sum(v)

}

# most probable state sequence

stSeq <- rep(NA,nbObs)

stSeq[nbObs] <- which.max(xi[nbObs,])

for (t in (nbObs-1):1)

stSeq[t] <- which.max(Gamma[,stSeq[t+1]]*xi[t,])

return(stSeq)

}

5.2 State probabilities

We call state probabilities the probabilities of being in the different states at each time point
(Zucchini et al., 2016, Chapter 5). This approach is referred to as local decoding.

5.2.1 Poisson HMM

The computation of state probabilities is based on the so-called forward probabilities and
backward probabilities. The forward probabilities αt are the quantities recursively computed
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in the forward algorithm (Equation 2). The j-th component of αt is

αt(j) = Pr(Z1 = z1,Z2 = z2, . . . ,Zt = zt, St = j)

To avoid numerical issues, we compute the forward log-probabilities, using the same scaling
trick as before.

logAlphaPois <- function(Z, rate, Gamma, delta)

{
nbObs <- length(Z)

lalpha <- matrix(NA,nbObs,2) # ncol = number of states

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)

allProbs[,1] <- dpois(Z,rate[1])

allProbs[,2] <- dpois(Z,rate[2])

lscale <- 0

v <- delta*allProbs[1,]

lalpha[1,] <- log(v)

for(t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

lscale <- lscale + log(sum(v))

v <- v/sum(v)

lalpha[t,] <- log(v) + lscale

}

return(lalpha)

}

The j-th component of the backward probability βt is the conditional probability

βt(j) = Pr(Zt+1 = zt+1,Zt+2 = zt+2, . . . ,ZT = zT |St = j)

logBetaPois <- function(Z, rate, Gamma)

{
nbObs <- length(Z)

nbStates <- 2 # number of states

lbeta <- matrix(NA,nbObs,nbStates)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)

allProbs[,1] <- dpois(Z,rate[1])

allProbs[,2] <- dpois(Z,rate[2])

lscale <- log(nbStates)

v <- rep(1,nbStates)/nbStates

lbeta[nbObs,] <- 0
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for(t in (nbObs-1):1) {
v <- Gamma%*%(allProbs[t+1,]*v)

lbeta[t,] <- log(v) + lscale

sumv <- sum(v)

v <- v/sumv

lscale <- lscale + log(sumv)

}

return(lbeta)

}

Finally, to get the state probabilities, we use that

αt(j)βt(j) = Pr(Z1 = z1, . . . ,ZT = zT , St = j)

stateProbsPois <- function(Z, rate, Gamma, delta)

{
nbObs <- length(Z)

la <- logAlphaPois(Z, rate, Gamma, delta) # forward log-probabilities

lb <- logBetaPois(Z, rate, Gamma) # backward log-probabilities

c <- max(la[nbObs,]) # cancels out below; prevents numerical errors

llk <- c + log(sum(exp(la[nbObs,]-c)))

stateProbs <- matrix(NA,nbObs,2) # ncol = number of states

for(t in 1:nbObs)

stateProbs[t,] <- exp(la[t,]+lb[t,]-llk)

return(stateProbs)

}

This returns a matrix with one row for each observation, and one column for each state.
The element on row i and column j is the probability of being in state j at time i.

sp <- stateProbsPois(Z, rateMLE, GammaMLE, deltaMLE)

We can plot the state probabilities and the true sequence of (simulated) states, to check
that they are consistent.

plot(sp[1:100,2], ylab="Pr(state = 2)")

plot(S1[1:100], ylab="State")
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5.2.2 Movement HMM

The only change needed is to adapt the computation of the matrix allProbs in the functions
for the forward and backward probabilities.

logAlphaMove <- function(step,angle,stepShape,stepRate,angleMean,angleCon,

Gamma,delta)

{
nbObs <- length(step)

lalpha <- matrix(NA,nbObs,3)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=3)

for(state in 1:3) {
stepProb <- dgamma(step,stepShape[state],stepRate[state])

angleProb <- dvm(angle,angleMean[state],angleCon[state])

# joint probability = step probability * angle probability

allProbs[,state] <- stepProb*angleProb

}

lscale <- 0

v <- delta*allProbs[1,]
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lalpha[1,] <- log(v)

for(t in 2:nbObs) {
v <- v%*%Gamma*allProbs[t,]

lscale <- lscale + log(sum(v))

v <- v/sum(v)

lalpha[t,] <- log(v) + lscale

}

return(lalpha)

}

logBetaMove <- function(step,angle,stepShape,stepRate,angleMean,angleCon,Gamma)

{
nbObs <- length(step)

nbStates <- 3 # number of states

lbeta <- matrix(NA,nbObs,nbStates)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=3)

for(state in 1:3) {
stepProb <- dgamma(step,stepShape[state],stepRate[state])

angleProb <- dvm(angle,angleMean[state],angleCon[state])

# joint probability = step probability * angle probability

allProbs[,state] <- stepProb*angleProb

}

lscale <- log(nbStates)

v <- rep(1,nbStates)/nbStates

lbeta[nbObs,] <- 0

for(t in (nbObs-1):1) {
v <- Gamma%*%(allProbs[t+1,]*v)

lbeta[t,] <- log(v) + lscale

sumv <- sum(v)

v <- v/sumv

lscale <- lscale + log(sumv)

}

return(lbeta)

}

stateProbsMove <- function(step,angle,stepShape,stepRate,angleMean,angleCon,

Gamma,delta)

{
nbObs <- length(step)

# forward log-probabilities

la <- logAlphaMove(step,angle,stepShape,stepRate,angleMean,angleCon,Gamma,
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delta)

# backward log-probabilities

lb <- logBetaMove(step,angle,stepShape,stepRate,angleMean,angleCon,Gamma)

c <- max(la[nbObs,]) # cancels out below; prevents numerical errors

llk <- c + log(sum(exp(la[nbObs,]-c)))

stateProbs <- matrix(NA,nbObs,3) # ncol = number of states

for(i in 1:nbObs)

stateProbs[i,] <- exp(la[i,]+lb[i,]-llk)

return(stateProbs)

}

5.3 Pseudo-residuals

Formal assessment of an HMM is done using so-called normal pseudo-residuals, described in
Chapter 6 of Zucchini et al. (2016). The pseudo-residuals are computed in two steps. First,
the uniform pseudo-residuals ut are computed as

ut = Pr(Zt ≤ zt)

If the model fits the data well, the ut are uniformly distributed on [0, 1]. Then, the normal
pseudo-residuals are given by

rt = Φ−1(ut)

where Φ is the standard normal cumulative distribution function. If the fit is good, the
normal pseudo-residuals are standard normally distributed.

5.3.1 Poisson HMM

The definition of pseudo-residuals given above applies to continuous distributions only. In the
Poisson HMM, we use a discrete Poisson distribution, and thus need to extend that definition.

For discrete distribution, the uniform pseudo-residuals are defined as segments:

[u−t , u
+
t ] = [Pr(Zt ≤ z−t ),Pr(Zt ≤ zt)]

where z−t is the largest possible value of the distribution which is strictly less than zt. The
normal pseudo-residuals are then defined as

[r−t , r
+
t ] = [Φ(u−t ),Φ(u+t )]

This section will be completed soon!

5.3.2 Movement HMM

In the movement data, the observations are bivariate: we have one step length and one
turning angle for each time point. Thus, we need to compute two series of pseudo-residuals,
one for the steps and one for the angles.
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pseudoResMove <- function(step,angle,stepShape,stepRate,angleMean,angleCon,

Gamma,delta)

{
nbObs <- length(step)

nbStates <- 3

pStepMat <- matrix(NA,nbObs,nbStates)

pAngleMat <- matrix(NA,nbObs,nbStates)

stepRes <- rep(NA,nbObs)

angleRes <- rep(NA,nbObs)

la <- logAlphaMove(step,angle,stepShape,stepRate,angleMean,angleCon,

Gamma,delta)

for(state in 1:nbStates) {
for(t in 1:nbObs) {

# integrate step density function

pStepMat[t,state] <- pgamma(step[t],stepShape[state],stepRate[state])

# integrate angle density function

pAngleMat[t,state] <- integrate(dvm, lower=-pi, upper=angle[t],

angleMean[state],

angleCon[state])$value

}
}

stepRes[1] <- qnorm(delta%*%pStepMat[1,])

angleRes[1] <- qnorm(delta%*%pAngleMat[1,])

for(t in 2:nbObs) {
c <- max(la[t-1,]) # cancels out below; prevents numerical errors

a <- exp(la[t-1,]-c)

stepRes[t] <- qnorm(t(a)%*%(Gamma/sum(a))%*%pStepMat[t,])

angleRes[t] <- qnorm(t(a)%*%(Gamma/sum(a))%*%pAngleMat[t,])

}

return(list(stepRes=stepRes,angleRes=angleRes))

}

Note that, instead of using pvm to compute the uniform pseudo-residuals for the angles,
we apply the function integrate to the density dvm. This is because pvm works on angle
values ranging from 0 to 2π, whereas we work with values on [−π, π]. Using integrate allows
us to specify the lower bound of the interval to integrate on.

Then, we plot the standard normal qq-plots of the residuals for the steps and angles, to
check their normality. As could be expected for simulated data, the model seems to fit well.

pr <- pseudoResMove(step,angle,stepShapeMLE,stepRateMLE,angleMeanMLE,

angleConMLE,GammaMLE2,deltaMLE2)

qqnorm(pr$stepRes, xlim=c(-3.5,3.5), ylim=c(-3.5,3.5), col="firebrick3",
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main="Step pseudo-residuals")

abline(0,1,lwd=2)

qqnorm(pr$angleRes, xlim=c(-3.5,3.5), ylim=c(-3.5,3.5), col="firebrick3",

main="Angle pseudo-residuals")

abline(0,1,lwd=2)
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6 Speed up with Rcpp

The R package Rcpp (Eddelbuettel and Francois, 2011) makes it simple to call C++ functions
from R, which can significantly improve the computational performance. It is our experience
that fitting an HMM is usually between five and ten times quicker when the likelihood function
is implemented in C++ (compared with pure R code).

We do not intend to give a comprehensive tutorial on the use of Rcpp, but only to provide
simple examples, based on the models described in the previous sections.
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In each example, we provide C++ code, and the R code that should be executed. We
make use of RcppArmadillo (Eddelbuettel and Sanderson, 2014), a linear algebra library, to
speed up matrices computations and take advantage of the friendly syntax. We want to point
out that, with the help of Rcpp and RcppArmadillo, writing C++ code does not require an
advanced knowledge of the language, for someone who is familiar with R.

6.1 Poisson HMM

We write the core of the log-likelihood in C++, to speed up each evaluation of the function,
and thus its optimization. The line preceding the function (// [[Rcpp::export]]) indicates
that an interface will automatically be generated to call it from R.

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

double nllk_rcpp(arma::vec Z, arma::vec rate, arma::mat Gamma,

arma::rowvec delta)

{
int nbObs = Z.size();

// probabilities of observations conditional on state

arma::mat allProbs(nbObs,2);

for(int t=0 ; t<nbObs ; t++) {
allProbs(t,0) = R::dpois(Z(t),rate(0),0);

allProbs(t,1) = R::dpois(Z(t),rate(1),0);

}

arma::rowvec v = delta%allProbs.row(0);

double llk = 0;

for (int t=1 ; t<nbObs ; t++) {
v = v*Gamma%allProbs.row(t);

llk = llk + log(sum(v));

v = v/sum(v);

}

return llk;

}

Then, we source the C++ file from an R session, and can use the function nllk pois rcpp

from R. Here, we decide to unpack the parameters in the R code, for convenience, but the
whole function could be written in C++, and directly provided to nlminb for the optimization.

library(Rcpp)

sourceCpp("code/poissonHMM.cpp")

nLogLikPois_rcpp <- function(Z,par)

{

30



# unpack parameters

rate <- par[1:2]

Gamma <- matrix(NA,nrow=2,ncol=2)

Gamma[,1] <- par[3:4]

Gamma[,2] <- 1-Gamma[,1]

delta <- c(par[5],1-par[5])

# nllk_pois_rcpp is defined in the C++ source file

llk <- nllk_pois_rcpp(Z,rate,Gamma,delta)

return(-llk)

}

Let’s make sure that our new function returns the same result as the pure R negative
log-likelihood function:

par <- c(rate,Gamma[,1],delta[1])

nLogLikPois_rcpp(Z,par)

## [1] 2905.149

We use the exact same code as before to call nlminb on the function:

# initial parameters

rate0 <- c(3,10)

Gamma0 <- matrix(c(0.9,0.1,0.1,0.9),ncol=2)

delta0 <- c(0.5,0.5)

par0 <- c(rate0,Gamma0[,1],delta0[1])

# fit model

model <- nlminb(start=par0,objective=nLogLikPois_rcpp,Z=Z,

lower=c(0,0,0,0,0),upper=c(Inf,Inf,1,1,1))

The estimates are the same as the ones found with the R code:

rateMLE <- model$par[1:2]

GammaMLE <- matrix(c(model$par[3:4],1-model$par[3:4]),ncol=2)

deltaMLE <- c(model$par[5],1-model$par[5])

rateMLE

## [1] 4.931807 14.770212

GammaMLE

## [,1] [,2]

## [1,] 0.7839544 0.2160456

## [2,] 0.1012449 0.8987551

deltaMLE

## [1] 0 1
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6.2 Movement HMM

Once again, we write the main part of the log-likelihood function in C++. We also define
the function dvm rcpp, the density function of the von Mises distribution, which we need but
is not included in Rcpp (we use its definition, based on the modified Bessel function of order
0), and dgamma rcpp, a vectorized version of R::dgamma.

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

#include <time.h>

// gamma density function

arma::colvec dgamma_rcpp(arma::vec x, double shape, double rate)

{
arma::colvec res(x.size());

for(int i=0;i<x.size();i++)

res(i) = R::dgamma(x(i),shape,1/rate,0);

return res;

}

// von Mises density function

arma::colvec dvm_rcpp(arma::vec x, double mu, double kappa)

{
arma::colvec res(x.size());

double b = R::bessel_i(kappa,0,2);

for(int i=0;i<x.size();i++)

res(i) = 1/(2*M_PI*b)*pow((exp(cos(x(i)-mu)-1)),kappa);

return res;

}

// [[Rcpp::export]]

double nllk_mov_rcpp(arma::vec step, arma::vec angle,arma::vec stepShape,

arma::vec stepRate, arma::vec angleMean,arma::vec angleCon,

arma::mat Gamma, arma::rowvec delta)

{
int nbObs = step.size();

// probabilities of observations conditional on state

arma::colvec stepProb;

arma::colvec angleProb;

arma::mat allProbs(nbObs,3);

for(int state=0 ; state<3 ; state++) {
stepProb = dgamma_rcpp(step,stepShape(state),stepRate(state));

angleProb = dvm_rcpp(angle,angleMean(state),angleCon(state));

// joint probability = step probability * angle probability
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allProbs.col(state) = stepProb%angleProb;

}

// forward algorithm

arma::rowvec v = delta%allProbs.row(0);

double llk = 0;

for(int t=1 ; t<nbObs ; t++) {
v = v*Gamma%allProbs.row(t);

llk = llk+log(sum(v));

v = v/sum(v);

}

return llk;

}

In the R function, we only unpack the parameters, and pass them to the C++ function
which performs the computation.

sourceCpp("code/movementHMM.cpp")

nLogLikMove_rcpp <- function(step,angle,par)

{
nbObs <- length(step)

# unpack parameters

stepShape <- par[1:3]

stepRate <- par[4:6]

angleMean <- par[7:9]

angleCon <- par[10:12]

Gamma <- diag(3)

Gamma[!Gamma] <- par[13:18]

Gamma <- Gamma/apply(Gamma,1,sum)

delta <- c(par[19],par[20],1)

delta <- delta/sum(delta)

# nllk_mov_rcpp is defined in the C++ source file

llk <- nllk_mov_rcpp(step,angle,stepShape,stepRate,angleMean,

angleCon,Gamma,delta)

return(-llk)

}

We check that the function returns the same result as earlier, on the simulated data.

wGamma <- Gamma/diag(Gamma)

wDelta <- delta/delta[3]

par <- c(stepShape,stepRate,angleMean,angleCon,wGamma[!diag(3)],wDelta[1:2])

nLogLikMove_rcpp(step,angle,par)
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## [1] 3878.016

We fit the model again, using nlminb:

# initial parameters

stepMean0 <- c(1,10,25)

stepSD0 <- c(1,5,15)

stepShape0 <- stepMean0^2/stepSD0^2

stepRate0 <- stepMean0/stepSD0^2

angleMean0 <- c(3,0,0)

angleCon0 <- c(0.5,1.5,5)

Gamma0 <- matrix(c(0.8,0.1,0.1,

0.1,0.8,0.1,

0.1,0.1,0.8),ncol=3)

# transform Gamma0 and delta0 to working scale

wGamma0 <- Gamma0/diag(Gamma)

wGamma0 <- Gamma0[!diag(3)]

delta0 <- c(1,1,1)/3

wDelta0 <- delta0[-3]/delta0[3]

par0 <- c(stepShape0,stepRate0,angleMean0,angleCon0,wGamma0,wDelta0)

model_rcpp <- nlminb(start=par0,objective=nLogLikMove_rcpp,step=step,angle=angle,

lower=c(rep(0,6),rep(-pi,3),rep(0,11)),

upper=c(rep(Inf,6),rep(pi,3),rep(Inf,11)))

We can verify that the estimates are identical to those returned by the pure R code
(actually, the last digits can be slightly different, due to numerical approximations).

stepShapeMLE <- model_rcpp$par[1:3]

stepRateMLE <- model_rcpp$par[4:6]

stepMeanMLE <- stepShapeMLE/stepRateMLE

stepSDMLE <- sqrt(stepShapeMLE)/stepRateMLE

angleMeanMLE <- model_rcpp$par[7:9]

angleConMLE <- model_rcpp$par[10:12]

GammaMLE2 <- diag(3)

GammaMLE2[!GammaMLE2] <- model_rcpp$par[13:18]

GammaMLE2 <- GammaMLE2/apply(GammaMLE2,1,sum)

deltaMLE2 <- c(model_rcpp$par[19],model_rcpp$par[20],1)

deltaMLE2 <- deltaMLE2/sum(deltaMLE2)

stepMeanMLE

## [1] 0.5527997 4.8875163 30.3121438

stepSDMLE

## [1] 0.553539 3.729172 16.843165
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angleMeanMLE

## [1] 3.10009177 -0.11538838 -0.01762983

angleConMLE

## [1] 1.0591710 0.9790834 8.5825098

GammaMLE2

## [,1] [,2] [,3]

## [1,] 0.89371640 0.04041002 0.06587358

## [2,] 0.07065495 0.85895293 0.07039212

## [3,] 0.05761083 0.12409389 0.81829528

deltaMLE2

## [1] 0.000000e+00 9.999983e-01 1.719918e-06

7 Unconstrained optimization

As mentioned earlier, nlminb is a constrained optimizer: it can deal with parameters con-
strained to bounded interval (which we specify with the arguments lower and upper). There
are various other optimizers in R, and some of them are unconstrained, i.e. they can only deal
with unbounded parameters – in (−∞,+∞). We provide an example of code to perform the
minimization of the log-likelihood function, using the unconstrained optimization function
nlm.

One solution is to use two sets of parameters: the natural parameters (bounded to their
natural scale), and the working parameters (unbounded), as described in Section 3.3.1 of
Zucchini et al. (2016). We define the functions n2w and w2n to perform the transformation
from natural to working parameters, and reciprocally.

library(boot) # for logit

# Transform parameters from natural scale (possibly bounded)

# to working scale (unbounded)

n2w <- function(rate,Gamma,delta)

{
wrate <- log(rate) # from [0,Inf) to (-Inf,Inf)

wGamma <- logit(Gamma[,1]) # from [0,1] to (-Inf,Inf)

wdelta <- logit(delta[1]) # from [0,1] to (-Inf,Inf)

return(c(wrate,wGamma,wdelta))

}

# Transform parameters from working scale (unbounded)

# to natural scale (possibly bounded)

w2n <- function(wpar)

{
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rate <- exp(wpar[1:2]) # from (-Inf,Inf) to [0,Inf)

Gamma <- matrix(NA,2,2)

Gamma[,1] <- inv.logit(wpar[3:4]) # from (-Inf,Inf) to [0,1]

Gamma[,2] <- 1-Gamma[,1]

delta <- c(inv.logit(wpar[5]),1-inv.logit(wpar[5])) # from (-Inf,Inf) to [0,1]

return(list(rate=rate,Gamma=Gamma,delta=delta))

}

Then, we modify slightly the negative log-likelihood function, to work on unbounded
parameters. The argument wpar is the one over which nlm optimizes the function, so it
contains the working parameters. To compute the likelihood, we transform the parameters
to their natural scale with w2n.

nLogLikPois2 <- function(Z,wpar)

{
nbObs <- length(Z)

# transform parameters to natural scale

par <- w2n(wpar)

# probabilities of observations conditional on state

allProbs <- matrix(1,nrow=nbObs,ncol=2)

allProbs[,1] <- dpois(Z,par$rate[1])

allProbs[,2] <- dpois(Z,par$rate[2])

v <- par$delta*allProbs[1,]

llk <- 0

for (t in 2:nbObs) {
v <- v%*%par$Gamma*allProbs[t,]

llk <- llk+log(sum(v))

v <- v/sum(v)

}

return(-llk)

}

Finally, we can call nlm of this function, to fit the model. Like before, it is necessary to
specify starting values for the parameters of the model. We define them on their natural scale,
and transform them to their working scale with n2w before providing them to the optimizer.
After the estimates have been found, we transform them back to their natural scale with w2n

before displaying them.

# initial parameters

rate0 <- c(3,10)

Gamma0 <- matrix(c(0.9,0.1,0.1,0.9),ncol=2)

delta0 <- c(0.5,0.5)

# transform to working scale

wpar0 <- n2w(rate0,Gamma0,delta0)
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# fit model

model <- nlm(p=wpar0,f=nLogLikPois2,Z=Z)

par <- w2n(model$estimate)

par

## $rate

## [1] 4.931801 14.770192

##

## $Gamma

## [,1] [,2]

## [1,] 0.7839543 0.2160457

## [2,] 0.1012448 0.8987552

##

## $delta

## [1] 6.868472e-08 9.999999e-01
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